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Abstract 

On the basis of endospectral graphs, we present a graphical method for obtaining 
pairs of nonisomorphic graphs with identical atomic counts of self-returning walks. 

1. Introduction 

Chemical graph theory has attracted an increasing research interest in recent 
years [1-7].  Among the large variety of topics treated, the graph isomorphism 
problem has received considerable attention. One way of approaching this problem 
is to search for a set of graph invariants and then to test the selectivity of the 
selected set of graph invariants over an extensive set of graphs. If some pairs of 
nonisomorphic graphs are found to have the same set of graph invariants, it is 
important to study under what structural conditions such a degeneracy appears as 
well as the methods to avoid it. If no pairs of nonisomorphic graphs with degenerate 
sets of graph invariants are found, the selected set of invafiants may be recommended 
for further use, albeit with no guarantee that it will always distinguish some untested 
nonisomorphic graphs. Among the large class of graph invariants, we mention here 
graph theoretic polynomials, spectral moments, and topological indices. 

Although it was initially conjectured that the characteristic polynomial and 
its spectrum might be used as unique descriptors of graphs, nonisomorphic graphs 
with the same characteristic polynomial were found [8-14],  and called isospectral 
or cospectral graphs. 

Other sets of graph invariants were defined on the basis of self-returning 
walks [15-  17]. A walk in a graph is a sequence of edges which can be continuously 
traversed, starting from any vertex and ending on any vertex. Repeated use of the 
same edge or edges is allowed. A self-returning walk is a walk starting and finishing 
at the same vertex. The length of a walk is the total number of edges that are 
traversed. 
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Self-returning walks of length k may be computed by considering the 
diagonal elements of the first k powers of the adjacency matrix A, due to the fact 
that each diagonal e l e m e n t  (Ak)ii of the matrix A ~ can be interpreted as the 
sum of all self-returning walks of length k from/to vertex i. The sequence of 

integers {(AI)ii, (A2)ii . . . . .  (AN)ii} defines the atomic code of the atom i in a 
molecule. The atomic code characterizes the environment of a given atom in a 
molecule. Randi6 [15] conjectured that the atomic codes defined on the basis of 
self-returning walks are a complete set of graph invariants, i.e. there is no 
pair of nonisomorphic graphs with the same collection of atomic codes. As 
examples, the atomic codes of trees T1, T2 and 7"3 are given in tables 1-3. Only 
even-length walks are given, because in trees there are no odd-length self- 
returning walks. 
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Table 1 

Atomic codes, structural codes and spectral moments of the tree T 1. In this 
and subsequent tables, L represents the length of the self-returning walks. 

Vertex 
L SM 

1 2 3 4 5 6 7 8 9 

2 1 2 3 2 2 2 2 1 1 16 

4 2 6 11 7 6 6 5 2 3 48 

6 6 21 42 27 21 19 14 5 11 166 

8 21 78 163 107 78 63 42 14 42 608 

SC 30 107 219 143 107 90 63 22 57 
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Table 2 

Atomic codes, structural codes and spectral moments of the tree T z, 

Vertex 
L SM 

1 2 3 4 5 6 7 8 9 10 11 

2 1 3 2 2 3 2 2 2 1 1 1 20 

4 3 10 7 7 11 7 6 5 2 3 3 64 

6 10 35 27 28 43 27 20 14 5 10 11 230 

8 35 127 107 116 174 107 71 43 14 35 43 872 

10 127 475 431 487 718 431 264 143 43 127 174 3420 

SC 176 650 574 640 949 574 363 207 65 176 232 

Table 3 

Atomic codes, structural codes and spectral moments of the tree T3. 

Vertex 

L SM 
1 2 3 4 5 6 7 8 9 10 11 

2 1 3 3 2 3 2 2 1 1 1 1 20 

4 3 11 12 8 11 7 5 2 3 3 3 68 

6 11 44 52 35 44 26 15 5 11 12 11 266 

8 44 184 231 158 184 101 51 15 44 52 44 1108 

10 184 791 1038 721 791 407 188 51 184 231 184 4770 

SC 243 1033 1336 924 1033 543 261 74 243 299 243 

However, in certain cases, the atomic code of individual atoms in a molecule 
is not unique. An example of such a case is vertices 2 and 5 of tree 7"1. 

The spectral moment (SM) of order k is obtained by summing all diagonal 
elements of (A ~) and corresponds to the count of all self-returning walks of  length 
k for the given molecule. The sequences of spectral moments for trees T~, 7"2 and 
T 3 are given in tables 1, 2 and 3, respectively. 

The structural code of atom i (SCi) was defined as [16,17] 
N 

SCI = ~ (Ak) i i .  (1) 
k=l 

Based on the SC, Barysz and Trinajsti~ [16, 17] defined the ordered structural 
code (OSC) as the ascending ordered sequence of SCs in a molecule. For the tree 
7"1, the OSC sequence is 

OSC(T1) = {22, 30, 57, 63, 90, 107, 107, 143,219}. 
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On the basis of the OSC, Barysz mad Tdnajstie proposed the following conjecture: 
Two trees are isomorphic if and only if they have identical ordered structural codes. 

We will offer counterexamples to the conjectures proposed by Randid [15] 
and by Barysz and Tdnajsti6 [16], and we will give a structural condition for two 
nonisomorphic graphs to present the same set of atomic codes. 

2. I~codal  graphs 

The concept of endospectral trees appeared in connection with the problem 
of isospectral trees [18-21]. An endospectral tree is a tree with a pair (or several 
sets) of topologically distinct vertices having identical atomic codes. For example, 
tree 7"1 has two endospectral vertices, namely 2 and 5; any subgraph attached to 
either vertex 2 or vertex 5 produces a pair of isospectral graphs. Tree T 2 has a pair 
of endospectral vertices represented by vertices 3 and 6, and tree T3 has two sets 
of endospectral vertices: 1, 9 and 11 ; 2 and 5. The endospectral vertices are depicted 
as distinct circles. Recently, the collection of endospectral trees up to 16 vertices 
was reported [22]. 

A pair of endospectral vertices in a graph exhibits a remarkable property: if 
we connect a subgraph to any of the endospectral vertices, then vertices belonging 
to this subgraph will have identical atomic codes, irrespective of the site of connection. 
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Scheme 2. 

Table 4 

Atomic codes, structural codes and spectral moments  of  the tree 7 4 . 

Vertex 

L SM 
1 2 3 4 5 6 7 8 9 10 11 

2 1 3 3 2 2 2 2 1 1 2 1 20 

4 3 12 12 7 6 6 5 2 3 6 2 64 

6 12 51 52 28 21 19 14 5 12 22 6 242 

8 51 222 231 119 79 63 42 14 52 89 22 984 

10 222 979 1035 520 312 219 133 42 231 378 89 4160 

SC 289 1267 1333 676 420 309 196 64 299 497 120 
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Table 5 

Atomic codes, structural codes and spectral moments of the tree Ts. 

Vertex 
L SM 

1 2 3 4 5 6 7 8 9 10 11 

2 1 2 3 2 3 2 2 1 1 2 1 20 

4 2 6 11 8 12 7 5 2 3 6 2 64 

6 6 21 43 35 51 27 15 5 11 22 6 242 

8 21 79 175 156 222 110 52 15 43 89 22 984 

10 79 312 734 699 979 464 199 52 175 378 89 4160 

SC 109 420 966 900 1267 610 273 75 233 497 120 

For example, trees 7"4 and Ts are obtained on the basis of the endospectral tree 
T 1 by inserting a subgraph representing the ethyl group to vertex 2 or 5, respectively. 
The atomic codes, spectral moments and structural codes of T4 and Ts are given in 
tables 4 and 5. As is easily observed, vertices 10 and 11 from trees T4 and T5, 
belonging to the attached subgraph, exhibit identical atomic codes when this subgraph 
is connected to vertex 2 or 5, respectively. The same fact is observed if we connect 
to tree T 1 a propyl and an isopropyl group, first to vertices 2 and 5, and then to 
vertices 5 and 2, obtaining trees T6 and 7"7, respectively, whose atomic codes, 
spectral moments and structural codes are given in tables 6 and 7. Again, the 
vertices belonging to the subgraphs have identical atomic codes, irrespective of  the 
endospectral vertex they are bonded to. 
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Scheme 3. 

Based on this finding, we give a method for constructing pairs of nonisomorphic 
graphs with identical atomic codes: 
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Scheme 4. 

Let G1 be an endospectral graph having two endospectral vertices V1 and V2, 
and containing a subgraph C which is symmetrical with respect to the vertices V1 
and V 2. We make no assumption on the structure of the subgraphs A and B, with 
cutpoints to VI and V2, respectively. Graph G2 is obtained by attaching two subgraphs 
A to vertex V~ and two subgraphs B to vertex 1/2, while graph G3 is obtained by 
attaching a pair of subgraphs A and B to each vertex Vl and 1/2. Obviously, graphs 
G2 and G3 present the same set of atomic codes; such a pair of graphs is called a 
pair of isocodal graphs. As a consequence, graphs G2 and G3 will have identical 
OSCs. 

We will use endospectral trees from the recently reported collection [22] in 
order to verify the above rule. 

Because it is possible for two or more vertices in a graph to possess the same 
SC, for the sake of brevity we will note the OSC of a graph G in a more condensed 
form: 

OSC(G) = {SCJ}, i=  1, 2 . . . . .  k, 

where SCi < SCi + 1, k is the number of distinct values of SCs and j is the number 
of vertices with the same structural count SCi. For the same reason, the vertices of 
a graph will be numbered from 1 to k, and from a set of topologically equivalent 
vertices exhibiting the same value of SC, the label will be depicted only for one 
vertex from the whole set. 

The simplest situation which fulfills the above conditions is represented by 
an endospectral tree with adjacent endospectral vertices. 

The first endospectral tree suitable for our scope is 7"8; it is a 3-tree (its 
highest vertex degree is 3) with 12 vertices. It gives two isocodal 5-trees with 22 
vertices, T 9 and T10, with the following OSC: 
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OSC(T 9) = OSC(T~o)= {109939684, 817805854, 817826324, 3261861752, 
4567695354 , 6093367372 , 24336104872}. 

If we insert a vertex between the two endospectral vertices in 7"8, we obtain 
another endospectral tree, namely Txl, which gives another pair of  isocodal 5-trees 
with 23 vertices, T~a and T13: 
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Scheme 6. 
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The common OSC of T12 and T13 is 

OSC(T~2) = OSC(TI3)= (53898234, 357411834, 

1724431354 , 2385356782 , 

357432304 , 

440795134, 

1171261442 , 

7887564792}. 
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Scheme 7. 

By inserting two vertices between the two endospectral vertices in T 8, we 
obtain either T14, which gives the pair T~5 and T16 of isocodal trees, or T17 with two 
pairs of endospectral vertices: Vl and ½, and v3 and v4, respectively. The first pair 
of vertices generates another pair of 5-trees with 24 vertices, namely T18 and T19, 
but the second pair generates a pair of 3-trees with 26 vertices, T2o and 7"21. This 
is a remarkable fact from an organic chemical viewpoint because the molecular 
graphs of organic compounds have degrees of at most four (3- or 4-trees in the 
present case): 

OSC(T15 ) = OSC(TI6 ) 

= {468128294, 3263325764, 3263366714, 862276952, 11681693902, 

16804042454, 22862565682, 6130867808, 82378170402}, 

O 8 C ( ~ 8 )  = OSC(T19) 

= {285990924,1806286294,1806327244,5361055202,8115736924, 

11442318582,11999215562,34136859962}, 

OSC(T2o) = osc(T2p 

= {288880964,1668514594,1668596504,4187730192,6658280314, 

9706428532,24587797094,47446171952}. 
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Thus, we can generate a whole family of isocodal 4-trees by inserting certain 
fragments between the two endospectral vertices from 7"8. In what follows, we will 
concentrate on new families of isocodal graphs. 

The 4-tree 7"22 with 14 vertices generates a pair of  7-trees with 26 vertices, 
7"23 and T24: 
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Scheme 9. 
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OSC(T23) = OSC(T/4) 

= { 67097996064, 645448187774, 645448269684, 3897845768816, 

4987448319994 , 6211246699472 , 37520545830592}. 

In the collection of endospectral trees [22], we can find another endospectral 
tree 7'25 with 16 vertices and with adjacent endospectral vertices, being able to 
produce isocodal trees T26 and 7"27, respectively: 
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Scheme 10. 

2 

~7 

OSC(T26) = OSC(Tzv) 

= {984743378434, 984779250624, 7895204259556, 7895240131894, 

7895347748612, 24820166535172, 35686965779292, 48523180035592, 

63328809304072 , 199192836781972}. 

The last endospectral tree from the collection [22] with adjacent endospectral 
vertices is T28, which generates the isocodal pair of 5-trees represented by T29 and 7"3o: 
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OSC(T29) = OSC(T3o) 
= { 603048398534, 603084270728, 4594605776314, 4594713393034, 

12879611135152, 19053616567614, 26433647052452, 98212645382472}. 

By inserting a linear subgraph between the endospectral vertices from the 
trees T22, 7"25 and T28, respectively, new families of isocodal 4-trees can be generated. 

The method of constructing pairs of isocodal graphs enables one to obtain, 
on the basis of the mentioned endospectral trees, pairs of isocodal cyclic graphs. 
The first pair is generated from Tll and represents a pair of three-membered cyclic 
graphs with 23 vertices and maximum degree 6, therefore with no organic chemical 
counterpart, namely R~ and R2: 

2 1 2 1 

& & 
Scheme 12. 

OSC(R1) = OSC(R2)= {53898234, 357411834, 357432304, 1171261442, 

1724431354 , 2385356782 , 440795134, 7887564792}. 

A pair of isocodal graphs containing three-membered rings with maximum 
degree 4, R3 and R4, can  be obtained on the basis of the endospectral tree T31, 
obtained in turn from the tree 7"8: 
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OSC(R3) = OSC(R4) 

= {211865064, 1147403944, 1147485854, 2519234992, 4178611514, 

6261554332 , 13915216424 , 1491914666, 22318043292}. 

We have presented a method for obtaining pairs of isocodal graphs, giving 
counterexamples to two conjectures concerning the problem of graph isomorphism. 
The smallest pair of isocodal trees is represented by 5-trees with 22 vertices, while 
the smallest pair of 4-trees is represented by a pair of trees with 26 vertices. Several 
pairs of isocodal cyclic graphs were also obtained. 
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